Engineering cyanobacteria for increased growth and productivity
نویسنده
چکیده
Liang, F. 2018. Engineering cyanobacteria for increased growth and productivity. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1616. 63 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0201-0. Increasing the photosynthetic efficiency is one of the strategies to increase the crop yields to meet the requirement of 50% more food by 2050. Due to the similarity on photosynthesis between crops and cyanobacteria, cyanobacteria are ideal alternatives to study photosynthesis since cyanobacteria are prokaryotes, easier to engineer and have shorter life cycle. On the other hand, cyanobacteria are promising cell factories for food additives, biofuels, and other products. To get the desired products from cyanobacteria directly will consume atmospheric CO2 and avoid additional releasing of CO2 from the usage of fossil resources. In this thesis, four CBB cycle enzymes were overexpressed individually in the model cyanobacterium Synechocystis PCC 6803. To get ribulose-1,5-bisphosphate carboxylase/ oxygenase (RuBisCO) overexpressed, two methods were used. One was to introduce another copy of the carboxysome protein CcmM gene into the cells since CcmM is essential for packing RuBisCO into the carboxysome. Another way was to tag the RuBisCO gene either on the N terminus of the large subunit or on the C terminus of the small subunit by FLAG. Even though the RuBisCO level increased, the specific RuBisCO activity did not change. Fructose-1,6-/ sedoheptulose-1,7-bisphosphatase (FBP/SBPase), aldolase (FBA) and transketolase (TK) were overexpressed by introducing a second copy of corresponding gene. The engineered strains with increased levels of RuBisCO, FBP/SBPase, and FBA grew faster, had higher maximum net oxygen evolution rate and accumulated more biomass when cultivated under 100μmol photons m s light intensity. The strain carrying more TK showed a chlorotic phenotype but still accumulated more biomass under the same light condition. Four strains with one of the CBB cycle enzymes overexpressed were selected to investigate the effects on ethanol production. Increased ethanol production and ethanol to total biomass rate were observed in the CBB cycle engineered strains. The best strain produced almost 50% ethanol out of the total biomass. This work shows that overexpressing selected enzymes of the CBB cycle in cyanobacteria resulted in enhanced total biomass accumulation and increased compound (exampled as ethanol) production under certain growth conditions.
منابع مشابه
Computational metabolic engineering strategies for growth-coupled biofuel production by Synechocystis
Chemical and fuel production by photosynthetic cyanobacteria is a promising technology but to date has not reached competitive rates and titers. Genome-scale metabolic modeling can reveal limitations in cyanobacteria metabolism and guide genetic engineering strategies to increase chemical production. Here, we used constraint-based modeling and optimization algorithms on a genome-scale model of ...
متن کاملHerbicides and insecticides effects on green algae and cyanobacteria strain
The toxic effects of herbicides (Machete, Saturn) and pesticides (Diazinon and Malathion) on green algae, Scenedesmus obtusiusculus, and cyanobacteria, Anabaena flos aquae, were studied. The results indicated that Machete and Saturn, in comparison to Diazinon and Malathion, were more toxic. On the other hand it was revealed that green algae was more sensitive to the pesticides than the cyanobac...
متن کاملGenetic and nutrient modulation of acetyl-CoA levels in Synechocystis for n-butanol production
BACKGROUND There is a strong interest in using photosynthetic cyanobacteria as production hosts for biofuels and chemicals. Recent work has shown the benefit of pathway engineering, enzyme tolerance, and co-factor usage for improving yields of fermentation products. RESULTS An n-butanol pathway was inserted into a Synechocystis mutant deficient in polyhydroxybutyrate synthesis. We found that ...
متن کاملHerbicides and insecticides effects on green algae and cyanobacteria strain
The toxic effects of herbicides (Machete, Saturn) and pesticides (Diazinon and Malathion) on green algae, Scenedesmus obtusiusculus, and cyanobacteria, Anabaena flos aquae, were studied. The results indicated that Machete and Saturn, in comparison to Diazinon and Malathion, were more toxic. On the other hand it was revealed that green algae was more sensitive to the pesticides than the cyanoba...
متن کاملEnhancing the light-driven production of d-lactate by engineering cyanobacterium using a combinational strategy
It is increasingly attractive to engineer cyanobacteria for bulk production of chemicals from CO2. However, cofactor bias of cyanobacteria is different from bacteria that prefer NADH, which hampers cyanobacterial strain engineering. In this study, the key enzyme d-lactate dehydrogenase (LdhD) from Lactobacillus bulgaricus ATCC11842 was engineered to reverse its favored cofactor from NADH to NAD...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018